Classifier Conditional Posterior Probabilities

نویسندگان

  • Robert P. W. Duin
  • David M. J. Tax
چکیده

Classifiers based on probability density estimates can be used to find posterior probabilities for the objects to be classified. These probabilities can be used for rejection or for combining classifiers. Posterior probabilities for other classifiers, however, have to be conditional for the classifier., i.e. they yield class probabilities for a given value of the classifier outcome instead for a given input feature vector. In this paper they are studied for a set of individual classifiers as well as for combination rules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perplexed Bayes Classifier

Naive Bayes classifiers estimate posterior probabilities poorly (Zhang, 2004). In this paper, we propose a modification to the Naive Bayes classification algorithm which improves the classifier’s posterior probability estimates without affecting its performance. Since the modification involves the use of the reciprocal of the perplexity of the class-conditional feature probabilities, we call th...

متن کامل

Naive Bayes and Text Classification I - Introduction and Theory

2 Naive Bayes Classification 3 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Posterior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Class-conditional Probabilities . . . . . . . . . . . . . . . . . . . 5 2.4 Prior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 Evidence . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Max-Min Posterior Pseudo-Probabilities Estimation of Posterior Class Probabilities to Maximize Class Separability

The estimation of the posterior class probabilities is desirable for optimal decision, decision confidence measure, and accurate performance evaluation of a classifier. In this paper, we address the problem of estimating posterior class probabilities by learning from samples for producing optimal classifiers. We introduce a posterior pseudo-probability function based on Bayes’ formula to transf...

متن کامل

A Classification Framework for Content-Based Image Retrieval

A challenging problem in image retrieval is the combination of multiple features and similarity models. We pose the retrieval problem in a two-level classification framework with two classes: the relevance class and the irrelevance class of the query. The first level maps high-dimensional feature spaces to two-dimensional probability spaces. The second level uses combinations of simple linear c...

متن کامل

Interpretation of hybrid generative/discriminative algorithms

In discriminant analysis, probabilistic generative and discriminative approaches represent two paradigms of statistical modelling and learning. In order to exploit the best of both worlds, hybrid modelling and learning techniques have attracted much research interest recently, one example being the so-called hybrid generative/discriminative algorithm proposed in Raina et al. (2003) and its mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998